a2 United States Patent
Zuk et al.

US009094372B2

US 9,094,372 B2
*Jul. 28, 2015

(10) Patent No.:
(45) Date of Patent:

(54) MULTI-METHOD GATEWAY-BASED
NETWORK SECURITY SYSTEMS AND
METHODS

(71) Applicant: Juniper Networks, Inc., Sunnyvale, CA

(US)
(72) Nir Zuk, Los Altos, CA (US); Kowsik
Guruswamy, Sunnyvale, CA (US)

Inventors:

(73) Juniper Networks, Inc., Sunnyvale, CA

Us)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.
2D 14/143,794

(22)

Appl. No.:

Filed: Dec. 30, 2013

(65) Prior Publication Data

US 2014/0115688 Al Apr. 24, 2014

Related U.S. Application Data

Continuation of application No. 13/616,046, filed on
Sep. 14, 2012, now Pat. No. 8,635,695, which is a
continuation of application No. 10/072,683, filed on
Feb. 8, 2002, now Pat. No. 8,370,936.

(63)

Int. Cl1.
HO4L 29/06
U.S. CL
CPC

(1)

(52)

(2006.01)

HO4L 63/0254 (2013.01); HO4L 63/0263
(2013.01); HO4L 63/12 (2013.01); HO4L
63/1416 (2013.01); HO4L 63/1441 (2013.01)

Remote

85b

(58) Field of Classification Search
CPC HO4L 63/0254
USPC 726/23
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,598,410 A 1/1997 Stone
5,600,668 A 2/1997 Shwed
5,781,550 A 7/1998 Templin et al.
5,835,726 A 11/1998 Shwed et al.
5,842,040 A 11/1998 Hughes et al.
5,909,686 A 6/1999 Muller et al.
(Continued)
FOREIGN PATENT DOCUMENTS
Jp 10-107795 4/1998
Jp 11-316677 11/1999
(Continued)
OTHER PUBLICATIONS

Das, Kumar, “Protocol Anomaly Detection for Network-based Intru-
sion Detection”, SANS Institute, Aug. 13, 2001.*

(Continued)

Primary Examiner — Mohammad [. Rahman
(74) Attorney, Agent, or Firm — Harrity & Harrity, LLP

(57) ABSTRACT

Systems and methods for detecting and preventing network
security breaches are described. The systems and methods
present a gateway-based packet-forwarding network security
solution to not only detect security breaches but also prevent
them by directly dropping suspicious packets and connec-
tions. The systems and methods employ multiple techniques
to detect and prevent network security breaches, including
stateful signature detection, traffic signature detection, and
protocol anomaly detection.

20 Claims, 16 Drawing Sheets

MMIDP

Firewall ﬁ/ Sensor
.......... 110b MMIDP
[SRRSSEERRREE) ooolo o GUl
85¢ 47h
80
100
1108 ® [e o MMIDP
570 67c 73 ! ' Database
@ MMIDP
5 730 Central
- = Management

MMIDP User er User
GuI (PC) {(Notsbook) (PDA)

(Wireless Phone)

Server

US 9,094,372 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

5,960,170 A 9/1999 Chen et al.
6,006,264 A 12/1999 Colby et al.
6,049,528 A 4/2000 Hendel et al.
6,088,356 A 7/2000 Hendel et al.
6,098,172 A 8/2000 Coss et al.
6,119,236 A 9/2000 Shipley
6,141,749 A 10/2000 Coss et al.
6,154,775 A 11/2000 Coss et al.
6,170,012 Bl 1/2001 Coss et al.
6,205,551 Bl 3/2001 Grosse
6,253,321 Bl 6/2001 Nikander et al.
6,275,942 Bl 8/2001 Bernhard
6,279,113 Bl 8/2001 Vaidya
6,301,668 Bl 10/2001 Gleichauf et al.
6,304,975 B1 10/2001 Shipley
6,311,278 Bl 10/2001 Raanan et al.
6,321,338 Bl 11/2001 Porras et al.
6,421,730 Bl 7/2002 Narad et al.
6,449,647 Bl 9/2002 Colby et al.
6,453,345 B2 9/2002 Trcka et al.
6,466,985 Bl 10/2002 Goyal et al.
6,477,651 Bl 11/2002 Teal
6,487,666 Bl 11/2002 Shanklin et al.
6,499,107 Bl 12/2002 Gleichauf et al.
6,591,303 Bl 7/2003 Hendel et al.
6,606,315 Bl 8/2003 Menditto et al.
6,633,560 Bl 10/2003 Tiwari et al.
6,650,641 Bl 11/2003 Albert et al.
6,704,278 Bl 3/2004 Albert et al.
6,725,377 BI1 4/2004 Kouznetsov
6,735,169 Bl 5/2004 Albert et al.
6,742,045 Bl 5/2004 Jordan et al.
6,775,692 Bl 8/2004 Albert et al.
6,788,648 Bl 9/2004 Peterson
6,851,061 Bl 2/2005 Holland et al.
6,856,991 Bl 2/2005 Srivastava
6,981,158 Bl 12/2005 Sanchez et al.
7,006,443 B2 2/2006 Storr
7,017,185 Bl 3/2006 Wiley et al.
7,032,037 B2 4/2006 Garnett et al.
7,042,870 Bl 5/2006 Albert et al.
7,051,066 Bl 5/2006 Albert et al.
7,133,914 B1 11/2006 Holbrook
7,143,438 Bl 11/2006 Coss et al.
7,331,061 Bl 2/2008 Ramsey et al.
7,346,686 B2 3/2008 Albert et al.
7,535,907 B2 5/2009 Hussain et al.
7,643,481 B2 1/2010 Kadambi et al.
7,734,752 B2 6/2010 Zuk et al.
7,778,254 B2 8/2010 Kadambi et al.
7,895,431 B2 2/2011 Bouchard et al.
8,023,413 B2 9/2011 Kadambi et al.
8,370,936 B2 2/2013 Zuk et al.
2002/0032797 Al 3/2002 Xu
2002/0124187 Al 9/2002 Lyle et al.
2003/0084321 Al* 5/2003 Tarquinietal. 713/200
2003/0105881 Al 6/2003 Symons et al.
2003/0105976 Al 6/2003 Copeland, III
2003/0145225 Al 7/2003 Bruton et al.
2003/0149887 Al 8/2003 Yadav
2003/0149888 Al 8/2003 Yadav
2004/0030927 Al 2/2004 Zuk
Al

2013/0067560 3/2013 Zuk et al.

FOREIGN PATENT DOCUMENTS

JP 2001-313640 11/2001

WO WO001/80480 A1 10/2001

WO WO 03/025766 3/2003
OTHER PUBLICATIONS

“The Security Benefits of a Flow-Based Intrusion Detection Sys-
tem”, http://hackerproof.org/technotes/ids/whitepaper_ 04_03_02.

pdf/www.lancope.com/www.stealthwatch.com, Apr. 3, 2002, 13
pages.

ICSA Labs, “Intrusion Detection System Buyer’s Guide,” ICSA
White Paper, 1999, pp. 1-52.

Jackson, K. et al., “Intrusion Detection System (IDS) Product Sur-
vey,” Los Alamos National Laboratory, Los Alamos, NM, LA-UR-
99/3883 Ver. 2.1, Jun. 25, 1999, pp. 1-103.

Jones, Kyle, “Introduction to Firewalls,” IT Audit.org Forum Net-
work Management, vol. 2, May 1, 1999, URL: http://www.itaudit.
org/forum/networkmanagement/f209nm htm, pp. 1-5.

Lancope, “The Security Benefits of a Flow-Based Intrusion Detec-
tion System,” White Paper, Apr. 3, 2002 pp. 1-11.

LapLink, Inc., “Article #178—Introduction to Firewalls,” www.
laplink.com/support/kb/article.asp?ID=178, Apr. 24, 2001, pp. 1-3.
McHugh, J. et al., “Defending Yourself: The Role of Intrusion Detec-
tion Systems,” Software Engineering Institute, IEEE Software Eng.,
Sep./Oct. 2000, pp. 42-51.

Network ICE Corporation, “Why Firewalls Are Not Enough,” at
www.networkice.com/products/firewalls.html, 2000, pp. 1-9.
Power, R., et al., “CSI Intrusion Detection System Resource—Five
Vendors Answer Some No-Nonsense Questions on IDS,” Computer
Security Alert #184, Jul. 1998, pp. 1-8.

Power, R., “CSI Roundtable: Experts discuss present and future
intrusion detection systems,” Computer Security Journal, vol. XIV,
#1, URL: http://www.gocsi.com/roundtable htm, 2001, pp. 1-20.
Sample, Char, et al., “Firewall and IDS Shortcomings,” SANS Net-
work Security, Monterey, CA, Oct. 2000, pp. 1-13.

Smith, Gary, “A Brief Taxonomy of Firewalls—Great Walls of Fire,”
SANS Institute’s Information Security Reading Room, May 18,
2001, URL: http://www.sans.org/infosecFAQ/firewall/taxonomy.
htm, pp. 1-21.

Spitzner, Lance, “How Stateful is Stateful Inspection? Understand-
ing the FW-1 State Table,” http://www.enteract.com/~1spitz/fwtable.
html, Nov. 29, 2000, pp. 1-8.

Sundaram, A., “An Introduction to Intrusion Detection,” www.acn.
org/crossroads/xrds2-4/intrus. html, Jan. 23, 2001, pp. 1-12.

Tyson, Jeff, “How Firewalls Work,” http://www.howstuffworks.com/
firewall.htm/printable, Oct. 24, 2000, pp. 1-7.

Xinetica, Ltd., “An Overview of Intrusion Detection Systems,”
Xinetica White Paper, Nov. 2001 (print date), URL: http://www.
xinetica.com/tech__explained/general/ids/wp__ids html, pp. 1-9.
Zuk, Nir, “Protect Yourself With Firewalls,” www.techtv.com, Jul.
12, 2001, URL: http://www.techtv.com/screensavers/print/
0,23102,3325761,00.html, pp. 1-3.

Stonesoft, “StoneBeat Security Cluster White Paper,” Aug. 2000,
Finland, pp. 1-9.

Stonesoft, “Secure Highly Available Enterprise—A White Paper,”
Feb. 2001, Finland, pp. 1-10.

Stonesoft, “StoneGate White Paper,” Mar. 2001, Finland, pp. 1-6.
Stonesoft Corp., “StoneGate,” product webpage, www.stonesoft.
com/document/363 html, Mar. 27, 2001 (print date), pp. 1-2.
Stonesoft Corp., “Next Level of Network Accessibility” webpage,
www.stonesoft.com/document/183.html, Mar. 27, 2001 (print date),
[

Stonesoft Corp., “Platforms,” webpage, www.stonesoft.com/docu-
ment/ 186 . html, Mar. 27, 2001 (print date), p. 1.

Nokia, Technical White Paper: The IP Clustering Power of Nokia
VPN-Keeping Customers Connected, Apr. 2001, pp. 1-13.

Nokia, “Nokia VPN Solutions—Nokia VPN CC2500 Gateway,”
2001, product information, pp. 1-2.

Nokia, “Nokia VPN Solutions—Nokia VPN CC5200 Gateway,”
2001, product information, pp. 1-2.

Nokia, “Nokia VPN Solutions—Nokia VPN CC5205 Gateway,”
2001, product information, pp. 1-2.

Julkunen et al., “Enhance Network Security with Dynamic Packet
Filter”, IEEE (1998), pp. 268-275.

Sharp et al., “Starburst: Building Next-Generation Internet Devices”,
Bell Labs Technical Journal6(2), pp. 6-17 (2002).

Network Magazine, vol. 2 No. 2 pp. 116-119 (with English abstract),
Feb. 2002.

Software Design, Nov. 1996, pp. 39-58 (with English abstract).

US 9,094,372 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Frantzen et al., “A Framework for Understanding Vulnerabilities in
Firewalls Using a Dataflow Model of Firewall Internals”, Computer
& Security, Elsevier Science Publishers, vol. 20, No. 3, May 2001,
pp. 263-270, XP004255237.

Roesch, “Snort Users Manual, Snort 1-15 Release: 1.8.1”, Aug. 10,
2001, 43 pages, XP002583387.

Debar et al., “Towards a taxonomy of Intrusion-Detection Systems”,
Computer Networks, Elsevier Science Publishers, vol. 31, No. 8, Apr.
23, 1999, pp. 805-822, XP004304519.

Dawson, “Intrusion Protection for Networks”, Byte, vol. 20, No. 4,
Apr. 1995, pp. 171-172, XP000562745.

Supplementary European Search Report corresponding to EP 03 71
0901, mailed Jun. 7, 2010, 3 pages.

Navarro, “A Partial Deterministic Automaton for Approximate String
Matching”, 1997, Department of Computer Science, University of
Chile.

Navarro et al., Improving an Algorithm for Approximate Pattern
Matching, 1998, Department of Computer Science, University of
Chile.

Axelsson, S., “Intrusion Detection Systems: A Survey and Tax-
onomy,” Dept. of Computer Eng., Chalmers Univ. of Technology,
Goteborg, Sweden, Mar. 14, 2000, pp. 1-27.

Avolio, F., “Firewalls and Virtual Private Networks,” CSI Firewall
Archives, printed Nov. 13, 2001, URL: http://www.spirit.com/CSI/
Papers/fw+vpns.html, pp. 1-7.

Bace, R., “An Introduction to Intrusion Detection & Assessment,”
ICSA Intrusion Detection Systems Consortium White Paper, 1999,
URL: http://www.icsalabs.com/html/communities/ids/whitepaper/
Intrusionl.pdf, pp. 1-38.

Business Wire, Inc., “NetScreen and OneSecure Unite to Deliver
Industry’s First Total Managed Security Services Platform,” San
Jose, CA, Feb. 20, 2001, pp. 1-2.

Business Wire, Inc., “OneSecure Launches the First Co-Managed
Security Services Platform,” Denver, CO, Jan. 29, 2001, pp. 1-2.
Carr, Jim, “Intrusion Detection Systems: Back to Front?,” Network
Magazine, Sep. 5, 2001, URL: http://www.networkmagazine.com/
article/NMG20010823S0007/2, pp. 1-9.

Check Point Software Technologies Ltd., Firewall-1® Technical
Overview P/N 500326, www.checkpoint.com, Oct. 2000, pp. 1-29.
Cisco Systems, “Cisco 10S Firewall Intrusion Detection System,”
Cisco I0S Release 12.0(5)T, 2001, pp. 1-40.

Cisco Systems, “Cisco I0S Firewall Authentication Proxy,” Cisco
I0S Release 12.0(5)T, 2001, pp. 1-48.

Clark, D., “RFC815-IP Datagram Reassembly Algorithms,” Internet
RFC/STD/FYI/BCP Archives, http://www.faqs.org/rfcs/rfc815.
html, Jul. 1982, pp. 1-8.

Copeland, Dr. John A., “Observing Network Traffic-Techniques to
Sort Out the Good, the Bad, and the Ugly,” PowerPoint Slide Presen-
tation presented to ISSA—Atlanta, Jun. 27, 2001, pp. 1-22.

Denning, Dorothy E., “An Intrusion-Detection Model,” IEEE Trans-
actions on Software Engineering, vol. SE-13, No. 2, Feb. 1987, 17
pages.

Farrow, Rik, “An Analysis of Current Firewall Technologies,” CSI
1997 Firewalls Matrix, 1998, URL: http://www.spirit.com/CSI/Pa-
pers/farrowpa.htm, pp. 1-5.

Firewall Product Comparison Table: VelociRaptor, BorderWare
Firewall Server and Firewall-1/VPN-1 Gateway, www.spirit.com,
printed Nov. 13, 2001, pp. 1-7.

Firewall Product Comparison Table: PIX Firewall, CyberGuard
Firewall for UnixWare & CyberGuard Firewall for Windows NT,
www.spirit.com, printed Nov. 13, 2001, pp. 1-8.

Firewall Product Comparison Table: CyberGuard Premium Appli-
ance Firewall, InstaGate EX & BizGuardian VPN Firewall, www.
spirit.com, printed Nov. 13, 2001, pp. 1-8.

Firewall Product Comparison Table: Server Protector 100, GNAT
Box Firewall Software & Lucent Managed Firewall, www.spirit.
com, printed Nov. 13, 2001, pp. 1-6.

Firewall Product Comparison Table: Internet Security and Accelera-
tion (ISA) Server 2000, NetBSD/i386 Firewall & Guardian Firewall,
www.spirit.com, printed Nov. 13, 2001, pp. 1-7.

Firewall Product Comparison Table: NetScreen-10 and NetScreen-
100, CyberwallPLUS & BorderManager, www.spirit.com, printed
Nov. 13, 2001, pp. 1-7.

Firewall Product Comparison Table: Gauntlet Firewall, Barricade
Classic/XL & Barricade S, www.spirit.com, printed Nov. 13, 2001,
pp. 1-8.

Firewall Product Comparison Table: Sidewinder™ , SecurePipe
Managed Firewall Service & SnapGear, www.spirit.com, printed
Nov. 13, 2001, pp. 1-7.

Firewall Product Comparison Table: SonicWALL PRO, Sunscreen
Secure Net & WinRoute Pro 4.1, www.spirit.com, printed Nov. 13,
2001, pp. 1-6.

Firewall Product Comparison Table: WatchGuard Technologies, Inc.
LiveSecurity System 4.6, www.spirit.com, printed Nov. 13,2001, pp.
1-4.

Graham, R., “FAQ: Network Intrusion Detection System,” www.
robertgraham.com/pubs/network-intrusion-detection.html, Ver. 0.8.
3, Mar. 21, 2000, pp. 1-43.

Habra, N. et al.,, “ASAX: Software Architecture and Rule-Based
Language for Universal Audit Trail Analysis,” Proceedings of the
ESORICS ’92, European Symposium on Research in Computer
Security, Nov. 23-25, 1992, Toulouse, Springer-Verlag, 16 pages.
“IDP Implementation Guide, version 2.0”, Sep. 24, 2002, 106 pages.
URL: http://www.juniper.net/techpubs/software/management/idp/
idp20/implementationguide_ 2_ 0.pdf.

European Search Report corresponding to EP 12 190 651.5, mailed
Sep. 26, 2013, 10 pages.

* cited by examiner

US 9,094,372 B2

Sheet 1 of 16

Jul. 28, 2015

U.S. Patent

(14Y HOI4d)

L "OId

Joulau|

I
I
I
I
I
I
_ P9I
I
SAIN _
D oloog| _ —
\ | =
|
/om “ e]
_
|
m
lemaJ14 N 8l "
| a9l
!
I
I
I
_
_ =
| =_
\“ 3¢)8
Ll _
L

US 9,094,372 B2

Sheet 2 of 16

Jul. 28, 2015

U.S. Patent

dQiNN

Ino
dAIAN

4

¢ dld

aseqejeq
dainiN

13

1= oloog]

g

l0suas
daiNN

To o ooOj

g

J0suasg
daIN

A o]ooo]

eop

— \A asg
10suag
/ daIinn
08 ~J=oToag)
I9AIBS % eGe
Juswabeuepy
1DUEL) 10SuUag
daIinn

AN N
€z

US 9,094,372 B2

Sheet 3 of 16

Jul. 28, 2015

U.S. Patent

aseqeleq
dQINN

no
dainn

ﬁ\ R I

N

NG

0H

(auoydssajaipn)
lasn
SO1 lanieg
= uswabeuely
m [esuan
daIANW

(vad) (300Q8i0N)
198N Jasn

(Dd)
Jesn

NS
daINN

£ "9ld

o) 4
Jonoy

==

EE

eag

EGP

{lemall Josusg
asy dainn
gs !
06 Znag
I[emall4 l0suag

dainn

Janlag
asm

Janeg
ey

0S

US 9,094,372 B2

Sheet 4 of 16

Jul. 28, 2015

U.S. Patent

(suoyd ssejaiim) (vad) (500g810N)
01 JENVEIS 188N 19s)
Juawsabeuepy i
jenus)d
daINN

aseqejeq
daInn

[TI

v "Old

\ llemait m
ogg m = !
Ly i | sones m /omm
AT o] 0o m qoM !

INo —3 _ !
daINN okl oo _\] m
\ JOSUSS lemaily m m

: g6 dalniN | = ;

v Ly qs8 _ m m
asy o6 \ 19M198 /m N

" e :

Zna T — “

06

D oJooo
EEI
10Susg \ [[emauld

BSY ddINN egg

Ino
2011 daINN

US 9,094,372 B2

Sheet 5 of 16

Jul. 28, 2015

U.S. Patent

w (suoydsseraim) (vad) (HoogaioN) (Od) NS
! 19s
! S0l 1808S oadd 108 1es) =N daIN
“ \ = Juswabeuey o _
m m [enua) i g/
m dainm [
| aseqeleq
L daiwn el
m 00} !
§DId 97 |
aLy i | senieg m N
Ino D o]ooo m aem 08;
dAININ qott Tomnoy) m _m
\ losuag “ _
D 56 esp dainn m m
asv yd i Janeg e, !
59 : Ire s
ZING o = m
e ey
no 7
201 daINW =Nl =[]
ETE -
/ 108U8S
esy ddINn 0O
ajoway

U.S. Patent Jul. 28, 2015 Sheet 6 of 16 US 9,094,372 B2

115

™~ IP Defragmentation Software Module
120

™~ Flow Manager Software Module
125

™~ TCP Reassembly Software Module
130

\ Protocol Anomaly Detection Software Module
135

N Stateful Signature Detection Software Module
140

™~ Traffic Signature Detection Software Module
145

N IP Router Software Module
150

N IP Forwarder Software Module

FIG._6

US 9,094,372 B2

Sheet 7 of 16

Jul. 28, 2015

U.S. Patent

3 0} g woy
uoIssas d11H

-9l

€91

g 0} 9 woyy
uoIssas did

[Y

8 1950ng ysey

L 19ong ysey

9 1932ng YyseH

413

g 0} v wol}
uolssag jaujal

191

G 1939ng ysey

p 19%ong ysey

€ 19%ong yseH

¢ 1IMong yseH

| 19%0ng yseH

U.S. Patent Jul. 28, 2015 Sheet 8 of 16 US 9,094,372 B2

165

170
\ Identify 5-tuple

corresponding to
incoming packets

175 J
\ Compute key

using perfect
hash function

180

Does packet flow descriptor

exist in the hash table
2

185
\ Insert a new packet

flow descriptor in the
hash table

1

190 Extract a pointer to
the packet flow)

descriptor

195 l
\ Pass pointer to

packet flow and
session to detection
modules

200
End

FIG._8

U.S. Patent

210

Jul. 28, 2015

215\

Access packet flow
and session in the flow
table from pointer

I

Sheet 9 of 16 US 9,094,372 B2

220 \

Determine protocols
associated to the
packet flow and session

:

225 \

Query protocol
database for relevant
protocol specifications

230

240

Matching
specifications

235
\ 4 /

Drop packets

FIG._9

U.S. Patent Jul. 28, 2015 Sheet 10 of 16 US 9,094,372 B2
BN Protocol RFC Standard
TCP 793, 1323, 2018
HTTP 1945, 2616
SMTP 821
FTP 959, 1579
NETBIOS
IMAP
POP3
TELNET
IRC
RSH Man pages
REXEC Man pages
RCMD Man pages

FIG._10

U.S. Patent Jul. 28, 2015 Sheet 11 of 16 US 9,094,372 B2

250
255
\ Access packet flow

and session in the flow
table from pointer

:

Find relevant
attack signatures in
signatures database

260

270 \\

265
Match
TCP ket signatures
c pfc e to TCP data
’ stream

275 -
\ Match signatures
to relevant data and

headers in packets
using DFA

280

Matching
Signatures

290 \ v
Drop packets
300~

FIG._11

U.S. Patent

305

Jul. 28, 2015

310\

Access packet flow
and session in the flow
table from pointer

:

315\

Find relevant
traffic signatures in
signatures database

320

Matching

Sheet 12 of 16 US 9,094,372 B2

Signatures
?

325 \

Update signature
count as specified by
the traffic signature

330

335 \

340

Signature count

> threshold
?

Generate alarm

(_Em)
FIG._12

U.S. Patent Jul. 28, 2015

345
“(Start)
350 L 4
\ Reconstruct

fragmented packets

355 +
\ Organizes packets

into flows and

sessions

360

TCP packets
?

365 \

Order TCP
packets

370

Protocol
irregularities
in packets

375

Matching attack
signatures
?

385

Maltching traffic

380
\"

Sheet 13 of 16 US 9,094,372 B2

390\

Update signature
count as specified by
the traffic signature

400

Signature counts

> threshold
?

405 \

Generate alarm

410\

Route and
forward packets

415

Drop
packets

signatures in
packets
?

FIG._13

U.S. Patent Jul. 28, 2015 Sheet 14 of 16 US 9,094,372 B2

420 T~ Configuration Interface
425 ~—_| Security Policy Editor
430 ~—_ Logs and Alarms Viewer
435 T~ Reports Viewer

440 \ Status Viewer

FIG._14

445 T~ Logs and Alarm Collection
490~ Status Collection

455 T~ Security Policy Storage
400~ Security Policy Distribution
465 ~~

Database Update

FIG._15

U.S. Patent

Jul. 28, 2015

470
{ Start ’
475 y
\ User connects to

FTP server

480\ FTP server requests
IP address and port
number from user

485
\ y

Users sends IP address
to the FTP server different
from user's IP address

490 MMIDP sensor
reconstructs

packet fragments

495
\ MMIDP sensor

organizes packets
into FTP flow

-

500

Sheet 15 of 16

MMIDP sensor
reassembles TCP fragments into
client-to-server and server-to-client
data streams

505

MMIDP sensor checks
IP address in FTP "port"
command whenever found in
client-to-server data stream

IP address match?/
No port command

515

MMIDP sensor drops
FTP packets, sends alarm
to server, and closes
FTP connection

520

A

MMIDP server collects
log and packet information
from MMIDP sensor
and sends it to
MMIDP GUI for display

525

End

FIG._16

US 9,094,372 B2

U.S. Patent Jul. 28, 2015

530
’(Stant)

535
User connects to
SMTP mail server
540
N,

SMTP mail server
establishes TCP
connection with the user

545 o \

User sends the
command "wiz" to mail
server while mail session is
in command mode

550
MMIDP sensor
reconstructs
packet fragments coming
from user
555

MMIDP sensor
organizes packets
into SMTP flow

560
\ y

Sheet 16 of 16

565

SMTP packets
are from client to
server and contain an
SMTP command(s)

570

MMIDP sensor
searches SMTP command(s)
for "wiz" signature

575

A 4

MMIDP sensor drops SMTP
packets, sends alarm
to server, and closes
SMTP connection

580

MMIDP server collects
log and packet information
from MMIDP sensor
and sends it to
MMIDP GU! for display

MMIDP sensor
reassembles TCP fragments into
client-to-server and server-to-client
data streams

585

End

FIG._17

US 9,094,372 B2

US 9,094,372 B2

1
MULTI-METHOD GATEWAY-BASED
NETWORK SECURITY SYSTEMS AND
METHODS

RELATED APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/616,046, filed Sep. 14, 2012, which is a
continuation of U.S. patent application Ser. No. 10/072,683,
filed Feb. 8, 2002 (now U.S. Pat. No. 8,370,936), the disclo-
sures of which are incorporated herein by reference.

FIELD OF THE INVENTION

This invention relates generally to network security sys-
tems and methods for detecting and preventing security
breaches on a network. More specifically, the present inven-
tion provides gateway-based packet-forwarding network
security systems and methods to not only detect security
breaches on the network but also prevent them by directly
dropping suspicious packets and connections. These systems
and methods employ multiple techniques to detect and pre-
vent intrusions, including stateful signature detection, traffic
signature detection, and protocol anomaly detection.

BACKGROUND OF THE INVENTION

The explosion of the Internet has revolutionized the ways
in which information is disseminated and shared. At any
given time, massive amounts of information are exchanged
electronically by millions of individuals worldwide using the
Internet but also for engaging in a wide variety of activities,
including communication, commercial transactions, and
entertainment.

The Internet breaks down traditional geographical barriers
by not requiring a dedicated end-to-end connection for com-
municating information between a source and a destination
network host. Instead, Internet traffic is split up into units of
information called “packets™ that are routed dynamically
through the network based on the most efficient route
between the source and the destination at any given moment.
Each of these packets includes a “header”, which indicates
the source from which the information originates and the
destination to which it is being sent as well as other informa-
tion necessary for routing the packets through the network.
The source and destination are identified by means of an “IP
address”, a 32-bit number associated to each network host.

Packet headers conform to a set of shared “protocols” used
in all Internet transmissions. Those protocols are the set of
conventions that determine how information will be
exchanged, often between computers from different manu-
facturers and running different operating systems. Internet
protocols specify how the network moves data, handles
errors, and allows information to be sent, received, and under-
stood. The most fundamental protocol is called “Internet pro-
tocol”, or IP, responsible for the formatting and delivery of
packets across the network. Transport protocols such as UDP,
TCP, and RTP, are used on top of IP to ensure that the data in
the packets is received correctly, with the TCP protocol fur-
ther guaranteeing that the packets are received reliably. Addi-
tional features and capabilities are provided by special-pur-
pose protocols that are used together with the IP and transport
protocols.

While the Internet protocol structure provides unparalleled
benefits to users, it also facilitates unlawful activity by pro-
viding a vast, inexpensive, and potentially anonymous way
for breaching security on any Internet host, including private

10

15

20

25

30

35

40

45

50

55

60

65

2

networks of which those hosts are a part. Despite the number
of'potential network security vulnerabilities, current network
security technologies are inadequate and ineftective to detect
and prevent the increasingly sophisticated and numerous net-
work security breaches. Examples of existing network secu-
rity technologies range from operating system controls, pass-
word protection tools, and anti-virus software to more
sophisticated technologies such as virtual private networks,
firewalls, and intrusion detection systems.

Virtual private networks (“VPNs”) are private networks
established over any shared network, such as the Internet.
VPN attempt to maintain privacy through the use of security
procedures involving authentication and encryption between
any two VPN termination points, such as a router in a remote
office, a laptop, a server application, and so on. In addition,
VPNs often make use of secure tunneling protocols such as
the developing standard Internet Protocol Security (“IPSec”)
that consists of a set of Internet security services for the IP
layer, including authentication, packet integrity and confi-
dentiality, and encryption key management. VPNs are typi-
cally integrated into firewall software to improve network
security.

A firewall is a set of software programs located at a private
network gateway that attempts to filter information flowing
between the private network and a shared network such as the
Internet. A firewall attempts to protect the private network
resources from outsiders and to control the private network
users’ access to outside resources. There are four main types
offirewalls in use today: packet filters, circuit-level gateways,
application gateways, and stateful inspection. There also may
be hybrid firewalls that are a combination of any two or more
of all four firewall types.

Packet filtering firewalls compare header information in
the incoming and outgoing IP packets on a private network
against a table of rules or filters set up by the network admin-
istrator to verify whether the packets meet the requirements in
the table. If a packet does not conform to those rules, the
firewall will reject the packet and the packet will not be
forwarded to its destination. Header information examined by
packet filtering firewalls typically includes source and desti-
nation addresses, protocol type, the network interface
through which the packet enters, the direction of traffic, rout-
ing, and connection state, among others. For example, a
packet filtering firewall may specify that any UDP packet
coming from IP addresses ranging from 232.181.20.10 to
232.181.20.255 will not be allowed into the private network.

The security of a private network having a packet filtering
firewall may be increased by using Network Address Trans-
lation (“NAT”) within the firewall. NAT functions like a pri-
vate branch exchange in a telephone system. All the source
addresses of outgoing IP packets are rewritten to the IP
address assigned to the firewall to give the impression that the
packets originated from the firewall rather than from the
internal hosts of the private network protected by the firewall.
Reply packets coming back are translated and forwarded to
the appropriate host. With NAT, internal hosts are allowed to
connect to hosts outside of the firewall but outside hosts
cannot connect directly to the internal hosts since they are
only aware of the IP address of the firewall.

Packet filtering firewalls are relatively inexpensive and do
not interfere with network performance, but alone they can-
not typically provide adequate security. Packet filtering rules
become unmanageable in complex environments, provide no
user authentication mechanisms, and are vulnerable to
attacks such as IP spoofing. For example, if a hacker can
figure out a trusted IP address, the hacker may forge an IP
header to a harmful packet. Being unable to differentiate

US 9,094,372 B2

3

between a valid packet and a forged one, a packet filtering
firewall would not reject the harmful packet.

Examples of packet filtering firewalls include the freely
distributed software package IPFilter for UNIX-based oper-
ating systems, the freely distributed SINUS TCP/IP packet
filter provided for the Linux operating system under a GNU
general public license, and the protocol-based Personal Fire-
wall PRO™ sold by Sygate Technologies, Inc., of Fremont,
Calif.

Another type of firewall referred to as a circuit-level fire-
wall operates at the session layer of the network to validate
TCP/IP sessions before opening a connection. Circuit-level
firewalls allow TCP packets to pass through only after a
packet handshake has taken place. A packet handshake starts
with the source sending a synchronize (“SYN”) packet to the
destination and ends with the destination sending a SYN
packet and an acknowledgment (“ACK”) packet back to the
source. Circuit-level firewalls maintain a table of valid con-
nections, which includes session state and sequence number
information of the SYN and ACK packets, and allow packets
to pass through when the network packet information
matches an entry in the table. All packets transmitted after the
handshake are allowed until the session is ended.

A circuit-level firewall maintains two connections per ses-
sion, one between the source and the firewall and another
between the firewall and the destination. As a result, all out-
going packets appear to have originated from the firewall
similar to packet filtering firewalls with NAT, that is, direct
contact between the source and the destination is prevented.

Circuit-level firewalls have good performance once the
initial connections are established and offer a high degree of
flexibility. However, they cannot examine the application-
level content of the packets it is transmitting in any given
connection. Once a connection has been established, any
malicious application or packet can run across the connec-
tion.

Most circuit-level firewalls are implemented using the pub-
licly available “SOCKS” networking protocol that enables
hosts on one side of a SOCKS server to access hosts on the
other side of the SOCKS server without requiring direct IP
reachability. When an application client starts a session with
an application server via a SOCKS server, the client first
sends the SOCKS server a list of authentication methods it
supports. The SOCKS firewall then compares these methods
against the security policy defined by the network adminis-
trator, chooses an authentication method, sends a message to
the client telling which authentication method to use, and
finally, authenticates the client. After the client is authenti-
cated, the SOCKS server establishes a virtual circuit between
the client and the server to transmit all packets through the
virtual circuit until the circuit is kept open. An example of a
circuit-level firewall using SOCKS include Hummingbird
SOCKS, provided by Hummingbird, [td., of Toronto,
Canada.

To address the inherent security risk of circuit-level fire-
walls, application-level firewalls that operate at the applica-
tion layer of the network were developed. Such firewalls run
an application proxy server as an intermediary between the
private network and the shared network for each allowed
application, such as an FTP proxy, a HTTP proxy, a SMTP
proxy for e-mail, and so on.

Application proxies are generally considered to be more
secure than packet filtering or circuit-level firewalls. Similar
to circuit-level firewalls, application proxies do not allow
direct connections and force all packets to be screened for
suitability. However, application proxies are typically slower
than packet filtering or circuit-level firewalls because all

10

15

20

25

30

35

40

45

50

55

60

65

4

packets have to be evaluated at the application layer, that is,
every packet passing through an application proxy must
undergo de-encapsulation/re-encapsulation before reaching
its final destination. In addition, proxy servers may not have
packet forwarding capabilities. Every new service requires a
new proxy server, and because proxies are highly dependent
on many other system components to operate correctly, such
as operating systems, TCP/IP stacks, and runtime libraries,
they are vulnerable to application-level security flaws and
bugs.

Application-proxies are typically implemented with built-
in packet filtering or stateful inspection capabilities.
Examples include the VelociRaptor firewall sold by Syman-
tec Corporation of Cupertino, Calif., the Gauntlet firewall
sold by Network Associates, Inc., of Santa Clara, Calif., and
the Sidewinder™ firewall sold by Secure Computing Corp.,
of San Jose, Calif.

The performance of packet filtering firewalls, circuit-level
firewalls, and application-proxies may be improved with the
use of stateful inspection. Stateful inspection firewalls are
essentially packet filtering firewalls that examine not just the
packet header, but also information about the packet in all
communication layers of the network, such as TCP packet
headers, to analyze the network traffic that traverses it.

Such firewalls monitor the state of any given network con-
nection and compile information about the connection in a
state table. Each packet request coming out of the firewall is
recorded in the state table so that incoming response packets
are verified against the corresponding request packets in the
state table. The decision on whether to reject a packet is
therefore based not only on the packet filtering rules table but
also on the context that has been established by prior packets
that have passed through the firewall. A packet that is a genu-
ine response to a request packet is passed on and all others are
rejected. If a response packet does not arrive in a specified
period of time, the connection is timed out.

A packet filtering firewall with stateful inspection also has
the ability to examine a packet in order to allow certain types
of commands within an application while disallowing others.
For example, a stateful inspection firewall can allow the FTP
“get” command while disallowing the “put” command. In
addition, stateful inspection firewalls incorporate dynamic
filtering techniques to minimize the number of exposed net-
work ports. With dynamic filtering, network ports are kept
open only as required for packet flow based on packet header
information, thereby reducing the attacks to open ports that
are idle.

Examples of stateful inspection firewalls include the fire-
wall described in U.S. Pat. No. 5,606,668 and the firewall
product called FireWall-1, sold by Check Point Software
Technologies, Inc., of Redwood City, Calif. FireWall-1
enables network administrators to define and implement a
single, centrally managed security policy. The security policy
is defined at a central management server by means of graphi-
cal user interface clients and downloaded to multiple enforce-
ment points throughout the network. The security policy is
defined in terms of security rules and network objects such as
gateways, routers, and hosts. Packet header data is examined
at all seven network layers and state information is kept of
packets at all communication stages to verify IP addresses,
port numbers, and any other information required to deter-
mine whether packets are permitted by the security policy.

State information is stored at a connections or state table
that organizes packets according to their corresponding net-
work connections, which are represented in the table by the
source IP address, the source port, the destination IP address,
the destination port, the IP protocol type, and other param-

US 9,094,372 B2

5

eters including Kbuf, Type, Flags, and Timeout. When a
packet is received by the firewall, the packet is checked
against the connections table to see if there is an existing
connection to which this packet belongs. If there is a connec-
tion, then the packet is forwarded to its network destination. If
there is no matching connection in the state table for that
specific packet, then the firewall compares it against the secu-
rity policy to see if there is a match that allows the packet to
pass. If there is, then the connection is added to the connec-
tions table and all subsequent packets belonging to that con-
versation will be forwarded along immediately, without being
checked against the policy. As a result, a connection may be
initially established with benign packets and then used to
transmit malicious packets that will be accepted by the fire-
wall. Another example of a stateful inspection firewall prod-
uct is the PIX firewall sold by Cisco Systems, Inc., of San
Jose, Calif.

The sole role of the currently available firewalls is to
enforce an organization’s network access policies. Such
access policies specify which hosts and protocols represent
good traffic, i.e., traffic that may be allowed in the network,
and which ones do not. In other words, a firewall simply
distinguishes good from bad traffic based on a pre-determined
and static configuration embodied in the access policy. Fire-
walls are not capable of detecting and stopping network
attacks. For example, once a firewall allows a HTTP connec-
tion, it will not be able to detect an attack against a web server
carried over that connection. Furthermore, a firewall is not
able to detect or prevent attacks made or appeared to be made
from inside the firewall, such as the presence of a Trojan
program inside the network that may be leaking confidential
information to the outside.

To attempt to fill the gaps in network security left open by
firewall products, “intrusion detection systems” have been
developed and used in tandem with firewalls. An intrusion
detection system (“IDS”) collects information from a variety
of system and network resources to analyze the information
for signs of intrusion, i.e., attacks coming from outside the
network, and misuse, i.e., attacks originating from inside the
network. Intrusion detection systems can be placed inside or
outside the firewall, with most network administrators choos-
ing to place the IDS inside of the firewall as an extra layer of
protection against misuse and intrusions undetected by the
firewall.

There are three types of intrusion detection systems: desk-
top-based IDSs, host-based IDSs, and network-based 1DSs.
Desktop-based IDSs offer file-level protection by examining
activity on individual systems, looking for potential attacks
on files or registry entries. A desktop-based IDS may be
useful for an individual user who connects to the Internet
directly and is not part of any extensive network. A popular
desktop-based IDS is the BlackICE Defender, sold by Inter-
net Security Systems, Inc., of Atlanta, Ga.

Host-based IDSs operate on a network host, such as a web
or application server, tracking and analyzing entries in the
host system’s application and operating system logs to detect
attacks and disallowed activity. Host-based IDSs are easy and
inexpensive to deploy and do not require any additional hard-
ware. Since they monitor events local to a host, they can
detect attacks and disallowed activity that may not necessar-
ily be seen by the network. However, because they consume
considerable resources, they can adversely affect the host’s
performance. In addition, successful intrusions that gain high
levels of privilege on the network may disable host-based
IDSs and remove traces of their operation entirely. Examples
of host-based IDSs include the Intruder Alert IDS sold by

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Symantec Corporation of Cupertino, Calif., and the Tripwire
IDS sold by Tripwire, Inc., of Portland, Oreg.

Network-based IDSs (“NIDSs”™) are designed to protect
multiple network hosts simultaneously by examining all the
packets flowing through a network segment. NIDSs often
consist of a set of single-purpose sensors or hosts placed at
various points in a network. These units monitor network
traffic, perform local analysis of that traffic and report attacks
to a central management unit. Unlike firewalls, which typi-
cally only examine packet header information relating to IP
addresses, ports, and protocol types, NIDSs may be designed
to examine all the different flags and options that can exist in
anetwork packet header as well as the packet data or payload,
thereby detecting maliciously crafted packets that are
designed to be overlooked by the firewall.

The most common network intrusion detection systems are
signature-based systems and protocol anomaly also known as
protocol analysis) systems. Signature-based systems look for
known attack patterns or signatures in network traffic. Signa-
tures can be as simple as a character string that matches a
portion of a network packet or as complex as a state machine.
In general, a signature can be concerned with a process, such
as the execution of a particular command, or an outcome,
such as the acquisition of a root shell. When a signature-based
NIDS finds a matching signature in a packet, it can then
respond by taking a user-defined action, sending an alert, or
performing additional logging of information.

Most signature-based NIDSs on the market use packet-
signature detection, which means that they examine the raw
bytes of every packet in a traffic flow to find a match for an
attack pattern. As such, these systems have several draw-
backs. First, since the entire traffic flow needs to be searched,
network performance may be significantly diminished. Sec-
ond, because more data are being searched, it is more likely
for a signature to match irrelevant data and result in a false
alarm. Third, since packet-signature NIDSs can only find
attacks in a packet for which a signature is written, new and
often very complicated attacks cannot be detected. And lastly,
packet-signature NIDSs may fail to examine packets when
the network traffic is too high.

Examples of signature-based NIDSs include the system
described in U.S. Pat. No. 6,279,113, the SecurelDS system,
sold by Cisco Systems, Inc., of San Jose, Calif., the RealSe-
cure system, sold by Internet Security Systems, Inc., of
Atlanta, Ga., and the NetProwler system, sold by Symantec
Corporation, of Cupertino, Calif.

In contrast to signature-based NIDSs that examine network
traffic for some previously defined intrusions, “protocol
anomaly” detection NIDSs examine network traffic for
abnormalities in generally accepted Internet rules of commu-
nication. These rules are defined by open protocols, published
standards, and vendor-defined specifications for communica-
tions between network devices. Once an irregularity is iden-
tified, it can be used to make network security decisions.

Protocol anomaly detection NIDSs provide several advan-
tages over signature-based NIDSs, such as the ability to
detect unknown attacks, including attacks that cannot be
detected by signature matching, as well as known attacks that
have been slightly modified to avoid detection from signa-
ture-based NIDSs. For example, protocol anomaly detection
NIDSs can detect “FTP bounce” attacks that occur when an
attacker tells the FTP server to open a connection to an IP
address that is different from the user’s address and “over-
flow” attacks that exploit the common butfer overflow pro-
gramming error. Nevertheless, there are attacks that conform
to the protocol specifications and therefore cannot be detected

US 9,094,372 B2

7

by protocol anomaly detection systems. Such attacks require
signatures or other methods of detection.

Examples of protocol anomaly detection NIDSs include
BlackICE Guard, sold by Internet Security Systems, of
Atlanta, Ga., and ManHunt, sold by Recourse Technologies,
Inc., of Redwood City, Calif. An alternative to detecting
abnormal network behavior as a result of protocol irregulari-
ties is suggested by StealthWatch, sold by Lancope, Inc., of
Atlanta, Ga. StealthWatch proposes a “tlow-based” architec-
ture to characterize the flow of packets between two hosts that
are associated with a single service, such as using a web
browser to access a single web server, or using an e-mail
program to access a mail server.

While the NIDSs discussed above may improve a net-
work’s security, they have several drawbacks. First, false
alarms are often produced by signature-based NIDSs that do
not evaluate a signature within the context of the network
traffic. For example, a signature-based NIDS may scan all
e-mail messages for the string “I love you” to detect the
infamous Internet worm that carries that name, which will
create a false alarm with some personal e-mail. Second, most
of the NIDSs discussed above use a single method of detec-
tion that is insufficient to comprehensively detect intrusions.
As such, false negatives are produced when the NIDSs do not
detect an attack while it is occurring. For example, a protocol
anomaly NIDS may generate a false negative when a hacker
fools the NIDS to see network traffic differently from the
target host so that the traffic can pass through the NIDS but
ultimately infect the target host by using sophisticated packet
and protocol tampering methods that cannot be detected by a
protocol anomaly NIDS.

In addition, some NIDSs are not able to detect “port scans”
and “network sweeps” used by attackers to identify potential
security and system flaws that may be exploited. Port scans
and network sweeps usually happen when an attacker
attempts to determine which services are allowed on the
network and to identify which network port would be a good
entrance to an attack. The attacker may either try each and
every port on a single network (port scan) or a certain port on
an entire network (network sweep). That is, port scans and
network sweeps are not attacks, but rather, indicators of
imminent attacks. Neither signature-based nor anomaly
detection NIDSs are able to identify port scans and network
sweeps since a scan conforms to the particular network pro-
tocol being used to transmit the packet and the scan pattern
does not appear within a particular network session.

A further drawback of most of the NIDSs discussed above
is that they need to be individually managed and all sensor
information resides on the sensor itself. That is, network
security administrators need to access each individual sensor
to activate or detect signatures, perform system management
backups, and so on. As the number of sensors increases,
management of the sensors becomes increasingly difficult,
especially considering the often incomplete logs that are gen-
erated. In the event of failure of any sensor, the replacement
sensor has to be reconfigured and tuned to match the original
Sensor.

Additionally, NIDSs cannot directly prevent attacks.
NIDSs work as passive intrusion detection mechanisms, but
are not capable to prevent attacks from occurring. When an
attack is occurring on a network, these systems can notify a
network security administrator to take action after the attack
has already taken place but cannot prevent the attack itself.
NIDSs do not sit directly in the path of traffic and cannot
actively react to suspend a network connection being attacked
oreven redirect the intruding packets to a safer or more secure
system.

20

40

45

8

An attempt to address this problem is described in U.S. Pat.
No. 6,119,236, which proposes to have an NIDS direct a
firewall to take action if an attack is detected to prevent the
attack from spreading. That is, the NIDS does not directly
prevent the attack, but simply interrupts it so that the attack
may not become any worse. In doing so, the NIDS may
inadvertently interrupt valid network traffic. For example, if
an offending hacker is using a major Internet service provider
IP address to attack the network and the NIDS system notifies
the firewall to block the packets coming from this IP address,
all users of' the Internet service provider, malicious or not, will
be denied network access.

Another proposal to address some of the deficiencies of
current NIDSs is to make use of TCP reset packets to prevent
TCP attacks. When a NIDS device detects a TCP attack, it
sends a TCP reset packet to both the source and the destina-
tion network hosts to reset the TCP connection and prevent
the attack from occurring. That is, this NIDS also does not
directly prevent the attack, but simply interrupts it so that the
attack may not become any worse. However, there are several
problems with this approach. First, it takes a period of time for
the NIDS to determine that an intrusion has been attempted
and that a reset packet should be sent. During this period, the
intruding packet and most likely some of the packets that
follow it, may be transferred to the target network and reached
the destination host. As a result, any TCP reset packet that is
sent upon detection may be too late. Second, TCP reset pack-
ets are only available for the TCP protocol and cannot there-
fore be used to prevent attacks taking place using UDP or
other connectionless protocols. And lastly, since a TCP reset
packet must carry a valid sequence number within a small
receiver window, a sophisticated attacker can transmit its
intruding packets to have the server’s receiver window
change so rapidly that the NIDS will have difficulty in deter-
mining which sequence number to put in the TCP reset packet
and fail to prevent the attack.

No firewall or NIDSs product, either alone or working in
tandem, is able to examine packets allowed onto a network
and react to disallowed packets or activity by directly drop-
ping those packets or closing the connection. In addition,
there is no hybrid NIDS that integrates signature detection,
protocol anomaly detection, and other sophisticated methods
such as traffic signature detection to achieve higher intrusion
detection accuracy and thus reduce the rate of false positives
and false negatives. There also is no NIDS that provides a
centralized, policy-based management solution to control all
the NIDS sensors. As a result, attempting to secure a network
using technology and products available today can be imprac-
tical, if not impossible.

SUMMARY OF THE INVENTION

In view of the foregoing, it is an object of the present
invention to provide network security systems and methods
capable of accurately and comprehensively detecting and
preventing network security breaches with low false alarm
rates.

It is also an object of the present invention to provide
network systems and methods that can examine packets
allowed onto a network and react to disallowed packets or
activity by directly dropping those packets or closing the
connection.

It is also an object of the present invention to provide
network security systems and methods that integrate stateful
signature detection, traffic signature detection, protocol
anomaly detection as well as other methods to detect and
prevent network security breaches.

US 9,094,372 B2

9

It is a further object of the present invention to provide
network security systems and methods that enable a network
security administrator to centrally manage all the network
intrusion detection sensors placed on the network.

These and other objects of the present invention are accom-
plished by providing multi-method network security systems
and methods to detect and prevent network security breaches
with low false alarm rates based on stateful signature detec-
tion, traffic signature detection, and protocol anomaly detec-
tion. The multi-method network security systems, hereinafter
referred to as the “MMIDP system”, consists of a software
and hardware solution placed directly in the path of network
traffic to drop any incoming or outgoing suspicious packets
before they reach network hosts or the outside network. The
MMIDP system may be used by itself or in conjunction with
a firewall.

The systems and methods of the present invention have
been advantageously incorporated into a preferred example
of an MMIDP with four main components: (1) a network
intrusion detection and prevention sensor; (2) a network
intrusion detection and prevention central management
server; (3) a network intrusion detection and prevention cen-
tral database; and (4) a network intrusion detection and pre-
vention graphical user interface.

The network intrusion detection and prevention sensor
consists of a hardware appliance that may be placed at mul-
tiple gateway points in the path of network traffic. A given
sensor may operate in gateway mode to drop any incoming or
outgoing suspicious packet before it reaches the network
hosts or the outside network. Alternatively, a sensor may
operate in passive mode to detect attacks and send alarms to
the network security administrator when a network attack is
taking place.

The sensor detects and prevents attacks with the use of six
software modules: (1) an IP defragmentation module; (2) a
flow manager software module; (3) a TCP reassembly soft-
ware module; (4) a protocol anomaly detection module; (5) a
stateful signature detection module; and (6) a traffic signature
detection module.

The IP defragmentation software module reconstructs
packets that were fragmented prior to reaching the sensor, that
is, this module combines the packet fragments back into
packets. After the packets are reconstructed, the flow manager
software module organizes the packets into “packet flows”
and associates them with a single communication session.
That is, packets are organized according to whether they flow
from a network client to the central management server or
vice-versa, and according to whether they are part of a TEL-
NET session, FTP session, HTTP session, and so on. In
addition, the flow manager software module is capable of
associating control and auxiliary flows within the same ses-
sion. For example, FTP control flows and their associated
FTP data flows are all combined in the same FTP session. The
TCP packets in all the sessions are organized by the TCP
reassembly software module, which orders the TCP packets
that arrived out of order while removing packet overlaps and
duplicate packets that were unnecessarily re-transmitted.

The IP defragmentation, flow manager, and TCP reassem-
bly software modules enable the network intrusion detection
and prevention sensor to search for security attacks faster and
more accurately than other currently available network intru-
sion detection systems.

Intruding packets are detected and prevented from spread-
ing to the private or outside networks by the protocol anomaly
detection, stateful signature detection, and traffic signature
detection software modules. Intruding packets are those con-
taining network attack identifiers associated with network

25

30

40

45

55

10

security breaches. Such network attack identifiers may be
protocol irregularities, attack signatures, traffic signatures, or
a combination of one or more of these, among others. The
protocol anomaly detection module looks at the packet flows
arranged by the flow manager software module to determine
irregularities in the network protocol specifications in the
packet. The stateful signature detection module matches
known attack signatures to the TCP data stream in case of
TCP packets and to the headers and data of packets transmit-
ted with other network protocols. The traffic signature mod-
ule matches traffic signatures to the network traffic to detect
attacks such as port scans and network sweeps. Incoming
packets that are judged malicious are dropped by the sensor
before reaching any of the network hosts and likewise, out-
going packets are dropped by the sensor before reaching the
outside network. The sensor may also drop all the packets in
a given session if one or more of its packets are considered to
be malicious.

The sensor is also equipped with an IP router software
module and an IP forwarder software module to route incom-
ing and outgoing packets to the appropriate points in the
network (IP router software module) and to use the routing
information to forward the packets to their destination (IP
forwarder software module.) The IP forwarder software mod-
ule has full control over which packets will be allowed
through the sensor and will not let packets that any of the other
software modules has deemed malicious to go through.

The network intrusion detection and prevention central
management server controls all the multiple sensors placed
on the network using a single network security policy speci-
fied by the network security administrators. The security
policy defines which traffic to inspect and which attacks the
sensor should look for. The server validates the security
policy, loads the security policy to all the sensors, maintains a
history of policy changes, and collects the logs and alarms
from the sensors for storage, display, and notification, among
other functions. The server also keeps a central database to
store the network security policy, including older and updated
versions of the policy, attack signatures, logs and alarms, and
other reporting information.

Network security administrators may view the logs and
alarms by means of a network detection and prevention
graphical user interface. The user interface can be accessed
from any client connected to the network and provides access
to all the management server and sensor functionalities. The
user interface enables network security administrators to
view information coming from the sensors and the server to
determine what is happening in the network. The information
provided by the sensors and the server is organized in reports
that provide access to network statistics that otherwise would
be difficult to gather, such as the top IP addresses used in
attacks, the top attacks, the number of alarms and incidents
generated, and whether an alarm is real or false, among other
statistics. In addition, network security administrators use the
user interface to define the network security policy and to
instruct the central management server to distribute the secu-
rity policy to some or all of the sensors. All communications
between the user interface, the server, and the sensors are
protected by encryption and authentication mechanisms.

Advantageously, the systems and methods of the present
invention detect and prevent network security breaches accu-
rately and immediately. Those systems and methods are able
to detect with low false alarm rates a multitude of attacks not
detected by current network security products. In addition,
the systems and methods of the present invention permit
convenient, useful, and cost effective central management of
an organization’s network security.

US 9,094,372 B2

11
BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects of the present invention
will be apparent upon consideration of the following detailed
description, taken in conjunction with the accompanying
drawings, in which like reference characters refer to like parts
throughout, and in which:

FIG. 1 is a schematic diagram of a prior art network envi-
ronment protected by a firewall and a network intrusion
detection system;

FIG. 2 is a schematic diagram of the software and hardware
components used in the disclosed example of an MMIDP
system,

FIG. 3 is a schematic diagram of a preferred MMIDP
system and the network environment in which the systems
and methods of the present invention operate;

FIG. 4 is a schematic diagram of an alternative MMIDP
system and the network environment in which the systems
and methods of the present invention operate;

FIG. 5 is a schematic diagram of another alternative
MMIDP system and the network environment in which the
systems and methods of the present invention operate;

FIG. 6 is a schematic view of the exemplary software
modules used in the network intrusion detection and preven-
tion sensor;

FIG. 7 is an exemplary flow table constructed by the flow
manager software module;

FIG. 8 is a flow chart showing exemplary steps taken by the
flow manager software module when new packets arrive at
the network intrusion detection and prevention sensor;

FIG.9is a flow chart showing exemplary steps taken by the
protocol anomaly detection software module when packets
arrive at the network intrusion detection and prevention sen-
sor running at gateway mode;

FIG.10is an exemplary table of protocols supported by the
private network;

FIG. 11 is a flow chart showing exemplary steps taken by
the stateful signature detection software module when pack-
ets arrive at the network intrusion detection and prevention
sensor running at gateway mode;

FIG. 12 is a flow chart showing exemplary steps taken by
the traffic signature detection software module when packets
arrive at the network intrusion detection and prevention sen-
sor running at gateway mode;

FIG. 13 is a flow chart showing exemplary steps taken by
the network intrusion detection and prevention sensor when
determining the validity of an incoming or outgoing packet;

FIG. 14 is a schematic view of exemplary functions per-
formed by the network intrusion detection and prevention
graphical user interface;

FIG. 15 is a schematic view of exemplary functions per-
formed by the network intrusion detection and prevention
central management server;

FIG. 16 is a flow chartillustrating exemplary steps taken by
a network intrusion detection and prevention sensor, server,
and graphical user interface when an FTP bounce attack is
imminent on the network; and

FIG. 17 is a flow chartillustrating exemplary steps taken by
a network intrusion detection and prevention sensor, server,
and graphical user interface when a SMTP “wiz” attack is
imminent on the network.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, a schematic diagram of a prior art
network environment protected by a firewall and a network
intrusion detection system is described. The connection

10

15

20

25

30

35

40

45

50

55

60

65

12

between Internet 19 and private network 17, consisting of
servers 16a and 16¢ and computers 165 and 164, is guarded
by firewall 18. Firewall 18 inspects all the packets flowing
from Internet 19 to private network 17 and controls the access
of users in private network 17 to outside resources. Any
packet not conforming to static heuristics predetermined by
the network access policy will be rejected by firewall 18, and
not allowed inside private network 17.

Network intrusion detection system (NIDS) 20 is placed
behind firewall 18 to inspect the packets allowed into network
17 by firewall 18. NIDS 20 is a passive device, capable only
of sending an alarm to the network security administrator of
private network 17 to warn that private network 17 is under
attack, or in certain cases, of directing firewall 18 to take
action if an attack is detected.

Referring now to FIG. 2, a schematic diagram of the soft-
ware and hardware components used in the disclosed
example of an MMIDP system is described. MMIDP system
23 is installed on a private network to detect and prevent
security breaches on the network. MMIDP system 23 consists
of MMIDP sensors 25a-d, MMIDP central management
server 30, MMIDP database 35, and MMIDP graphical user
interfaces (“GUIs”) 40a-d.

MMIDP sensors 25a-d are hardware appliances placed at
multiple gateway points on a private network, that is, at any
point in the network that acts as an entrance to other networks,
such as the Internet. MMIDP sensors 25a-d are all centrally
managed from MMIDP server 30. Network administrators
use MMIDP GUIs 40a-d to define a network security policy
and to instruct MMIDP central management server 30 to
distribute the security policy to some or all of MMIDP sen-
sors 25a-d. The network security policy defines which traffic
to inspect and which attacks MMIDP sensors 25a-d should
look for.

In a preferred embodiment, MMIDP sensors 25a-d operate
in gateway mode to prevent attacks by dropping any suspi-
cious packet before it reaches its intended recipient, either
inside or outside the private network or by interrupting or
closing the network connection generating the attacks.
MMIDP sensors 25a-d operating in gateway mode not only
detect network attacks but also prevent them from occurring.
Alternatively, MMIDP sensors 25a-d may operate in passive
mode to detect attacks and send alarms that are displayed in
MMIDP GUIs 40a-d to the network security administrators
when a network attack is taking place. The network security
administrators then may decide on an appropriate course of
action to control the network attack.

MMIDP sensors 25a-d are equipped with eight software
modules described below that operate on the network packets
to detect and prevent network security breaches: (1) an IP
defragmentation software module; (2) a flow manager soft-
ware module; (3) a TCP reassembly software module; (4) a
protocol anomaly detection software module; (5) a stateful
signature detection software module; (6) a traffic signature
detection software module; (7) an IP router software module;
and (8) an IP forwarder software module.

MMIDP sensors 25a-d are all centrally managed from
MMIDP server 30. MMIDP server 30 validates the network
security policy defined by the network security administra-
tors using MMIDP GUIs 40a-d, which transmit the policy to
server 30, loads the security policy to some or all MMIDP
sensors 25a-d, maintains a history of policy changes, and
collects the logs and alarms from MMIDP sensors 25a-d for
storage, display, and notification, among other functions, as
described in detail below. In addition, MMIDP server 30
keeps MMIDP database 35 to store the network security

US 9,094,372 B2

13

policy, including older and updated versions of the policy,
attack signatures, logs and alarms, and other reporting infor-
mation.

Network security administrators use MMIDP GUIs 40a-d
to analyze how MMIDP sensors 25a-d are handling incoming
and outgoing network packets. MMIDP GUIs 40a-d can be
accessed from any client connected to the network and pro-
vide access to all the functionalities of MMIDP sensors 25a-d
and MMIDP server 30. MMIDP GUIs 40a-d enable network
security administrators to view information coming from
MMIDP sensors 25a-d and MMIDP server 30 to determine
what is happening in the network and to take any subsequent
action if necessary. The information provided by MMIDP
sensors 25a-d and MMIDP server 30 is organized in reports
that provide access to network statistics that otherwise would
be difficult to gather, such as the top IP addresses used in
attacks, the top attacks, the number of alarms and incidents
generated, and whether an alarm is real or false, among other
statistics. In addition, network security administrators may
specify which signatures from the set of signatures stored in
MMIDP database 35 will be used to detect and prevent
attacks, as well as create new signatures. All communications
between MMIDP sensors 25a-d, MMIDP server 30, MMIDP
database 35, and MMIDP GUIs 40a-d are protected by
encryption and authentication mechanisms.

Referring now to FIG. 3 is a schematic diagram of a pre-
ferred MMIDP system and the network environment in which
the systems and methods of the present invention operate is
described. MMIDP sensors 45a-c¢ are placed at the gateway
points of a private network consisting of remote office local
area network 50, demilitarized zone (“DMZ”) 55, and local
area network 60, formed by wired network 65 and wireless
network 70.

Wired network 65 is a local area network inside local area
network 60 connecting MMIDP GUI 110aq, personal com-
puteruser 675, and notebook user 67¢. Wireless network 70 is
a wireless local area network inside local area network 60
connecting PDA user 73a and wireless telephone user 7356 by
means of base station 72. DMZ 55 is a neutral zone in the
private network consisting of mail server 75 and web server
80 to handle all mail and web access requests from internal
users in the network as well as from users outside of the
network. DMZ 55 is used as a further layer of security to
prevent outside users to have access to other servers in the
private network besides mail server 75 and web server 80. It
should be understood by one skilled in the art that remote
office local area network 50, local area network 60, and DMZ
55 may comprise any electronic device capable of connecting
to the Internet or other network operating with common pro-
tocols via a wired or wireless network, such as personal
computers, notebook computers, personal digital assistants,
wireless telephone systems, and video game systems, among
others.

MMIDP sensors 45a-c are positioned at multiple gateway
points of the private network inside firewalls 85a-b to inspect
all the incoming packets to the private network that were
deemed secure by firewalls 85a-b as well as all outgoing
packets that are not checked by firewalls 85a-b. Placing
MMIDP sensors 45a-c inside firewalls 85a-b reduces the
traffic that MMIDP sensors 45a-c need to analyze since only
the packet flows and connections accepted by firewalls 85a-b
need to be checked. In addition, placing MMIDP sensors
45a-c inside firewalls 854-b allows network security admin-
istrators to evaluate the performance of firewalls 85a-b. Fire-
walls 85a-b may be packet filtering firewalls, circuit-level
firewalls, application-level firewalls, or stateful inspection
firewalls. Preferably, firewalls 85a-b are stateful inspection

5

10

15

20

25

30

35

40

45

50

55

60

65

14

firewalls that serve as entrance points to Internet 90, with
firewall 8554 connected to router 95 for routing the incoming
network packets to either DMZ 55 or local area network 60.

MMIDP server 100 in local area network 60 is able to
centrally manage MMIDP sensors 45a-c. MMIDP server 100
also maintains MMIDP database 105 to store network secu-
rity policies, attack signatures, logs and alarms, and other
reporting information.

Network security administrators use MMIDP GUIs 110a-¢
to define a network security policy and to instruct MMIDP
central management server 100 to distribute the security
policy to some or all of MMIDP sensors 45a-c. The network
security policy defines which traffic to inspect and which
attacks MMIDP sensors 45a-c should look for. MMIDP GUIs
110a-c enable network security administrators to view infor-
mation coming from MMIDP sensors 45a-c, and MMIDP
server 100 to determine what is happening in the network
formed by remote office local area network 50, DMZ 55, and
local area network 60. The information provided by MMIDP
sensors 45a-c and MMIDP server 100 is organized in reports
that provide access to a list of all the detected attacks and
intrusions as well as network statistics that otherwise would
be difficult to gather, such as the top IP addresses used in
attacks, the top attacks, the number of alarms and incidents
generated, and whether an alarm is real or false, among other
statistics. In addition, network security administrators may
specify which signatures from the set of signatures stored in
MMIDP database 105 will be used to detect and prevent
attacks, as well as create new signatures. It should be under-
stood by one skilled in the art that MMIDP GUIs 110a-c are
networking clients that may be placed on any network that has
access to MMIDP server 100 through Internet 90.

Referring now to FIG. 4, a schematic diagram of an alter-
native MMIDP system and the network environment in which
the systems and methods of the present invention operate is
described. In this alternative, MMIDP sensors 45a-b are
placed outside of firewalls 85a-c¢ so that MMIDP sensors
45a-b are the entrance points to Internet 90. In addition,
MMIDP sensor 455 is capable of supporting more than one
network interface, such as network connection 47a and net-
work connection 475. This alternative may be used in cases
where network security administrators are mostly concerned
about attacks from outsiders. Placing MMIDP sensors 45a-b
outside of firewalls 85a-c enables network security adminis-
trators to watch all the traffic that would typically be blocked
by the firewall and would be undetected by an internal system.

Referring now to FIG. 5, a schematic diagram of another
alternative MMIDP system and the network environment in
which the systems and methods of the present invention oper-
ate is described. In this alternative, MMIDP sensors 45a-5 are
fully responsible for the security of the private network
formed by remote office local area network 50, DMZ 55, and
local area network 60. There are no firewalls being used to
protect the private network. MMIDP sensors 45a-b analyze
all the incoming and outgoing packets in the private network.
This alternative may be used in cases where network security
administrators are confident that MMIDP sensors 45a-b will
beable to handle the volume of traffic to and from the network
orin cases where network security administrators are not able
to invest the time and money required to purchase an addi-
tional firewall system that has to be integrated and fully com-
pliant with the other systems on the network.

Referring now to FIG. 6, a schematic view of the exem-
plary software modules used in the network intrusion detec-
tion and prevention sensor is described. MMIDP sensors
25a-d detect and prevent network security attacks with the
use of eight software modules: (1) IP defragmentation soft-

US 9,094,372 B2

15

ware module 115; (2) flow manager software module 120; (3)
TCP reassembly software module 125; (4) protocol anomaly
detection software module 130; (5) stateful signature detec-
tion software module 135; (6) traffic signature detection soft-
ware module 140; (7) IP router software module 145; and (8)
IP forwarder software module 150.

IP defragmentation software module 115 reconstructs
packets that were fragmented prior to reaching MMIDP sen-
sors 25a-d. Packets are fragmented at network gateways
when they are larger than the maximum packet size allowed in
the network. The packets are reassembled according to the
algorithm specified in the RFC 815 standard of the Internet
Engineering Task Force. The algorithm can reassemble any
number of packet fragments arriving in any order with any
possible pattern of fragment overlap and duplication by keep-
ing a buffer of length equal to the length of the packet being
reassembled. The length of the packet is specified in the
packet header. IP defragmentation software module 115 also
performs security verification checks on the packet frag-
ments, throwing out and reporting fragments whose param-
eters (such as packet length or packet offset) are known to be
malicious and potentially dangerous.

After the packets are reconstructed by IP defragmentation
software module 115, flow manager software module 120
organizes the packets into “packet flows”, also referred to as
flows, and associates them with a single communication ses-
sion. A packet flow is a sequence of packets that flow from a
source to a destination. That is, packets are organized accord-
ing to whether they originate at the private network and flow
to the outside network or vice-versa, and according to
whether they are part of a TELNET session, FTP session,
HTTP session, and so on. Control and data flows are grouped
into the same session. Flow manager software module 120
organizes all the packet flows coming to and from the private
network into a flow table that is implemented as a hash table
for easy access by software modules 130, 135, and 140.

Referring now to FIG. 7, an exemplary flow table con-
structed by the flow manager software module is described.
Flow table 155 is implemented as a hash table that organizes
the packets coming into MMIDP sensors 25a-d into packet
flows and sessions. The hash table may have “n” cells or
buckets, such as the 8 hash buckets shown for flow table 155.
Each bucket in the table consists of a pointer to a linked list of
packet flow descriptors that is addressed by a hash value. The
hash value is computed by a perfect hash function that hashes
the values of a S-tuple consisting of <source IP address,
source port, destination IP address, destination port, proto-
col> into a unique integer in the range of 1 to “n”. For
example, flow table 155 contains hash table buckets 153a-/%,
with each bucket being addressed by an integer hash value
ranging from 1 to 8. Furthermore, each packet flow descriptor
is addressed by a 5-tuple key which is unique to that flow and
is made of'that flow’s 5-tuple <source IP address, source port,
destination IP address, destination port, protocol>.

The packet flow descriptors addressed by each key consist
of information about each specific packet flow, including the
S-tuple above as well as the list of packets that belong to the
described packet flow. For example, hash table bucket 153«
points to packet flow descriptors 156a and 1565, while hash
table bucket 153¢ points to packet flow descriptor 157. In
addition, each packet flow in the list is associated to a session,
such as TELNET session 161, FTP session 162, and HTTP
session 163. The association is done by a double pointer
(represented by the double arrows in FIG. 7) so that each
packet flow descriptor points to a session and the session
points back to each packet flow descriptor. The double pointer
enables protocol anomaly detection software module 130,

10

15

20

25

30

35

40

45

50

55

60

65

16

stateful signature detection software module 135, and traffic
signature detection software module 140 to quickly and accu-
rately retrieve information about incoming packet flows and
their associated sessions. Packet flow descriptor 1564, for
example, contains information about a TELNET flow from
source A to destination B, as well as a list of packets that
belong to that packet flow. Packet flow descriptors addressed
by the same hash key (and belonging to the same hash bucket)
may point to different sessions and packet flows descriptors
belonging to the same session may be addressed by different
hash keys. For example, packet flow descriptors 156a-b are
both in hash bucket 153a, but packet flow descriptor 156a is
associated to TELNET session 161 while packet flow
descriptor 1565 is associated to FTP session 162, which is
also associated to packet flow descriptors 157, 158, and 1595,
all belonging to different hash buckets.

Referring now to FIG. 8, a flow chart showing exemplary
steps taken by the flow manager software module when new
packets arrive at the network intrusion detection and preven-
tion sensor is described. When a new flow of packets arrive at
MMIDP sensors 25a-d, flow manager software module 120
identifies the source, destination, the source port, the desti-
nation port, and the protocol used for the packets at step 170
to compute the perfect hash function that maps the 5-tuple
identifier into a distinct integer key at step 175. At step 180,
flow manager software module 120 determines whether the
key addresses an already existing packet flow descriptor in the
hash table. If the key does not correspond to an existing
packet flow descriptor, a new packet flow descriptor is
inserted in the table at step 185.

At step 190, the system extracts a pointer to the packet flow
descriptor for the incoming packet. Lastly, at step 200, flow
manager software module 120 passes the pointer to the packet
flow descriptor and its corresponding session, as extracted in
step 190, to detection modules 130, 135, and 140. This
enables protocol anomaly detection software module 130,
stateful signature detection module 135, and traffic signature
detection software module 140 to quickly and accurately
retrieve information about an incoming packet flow descrip-
tor and its associated session from its pointer.

Referring back to FIG. 6, the TCP packets in all the packet
flows in the flow table are reassembled by TCP reassembly
software module 125. TCP reassembly software module 125
arranges TCP packets that are part of a stream of packets in
their correct order, while removing duplicate packets and
packetoverlap. Each TCP packet has a sequence number in its
header, which enables software module 125 to rearrange TCP
packets in their correct order when they arrive out of sequence
or when they are unnecessarily re-transmitted in case they are
delayed in the network by a longer time period than tolerated
by the network.

1P defragmentation software module 115, flow manager
software module 120, and TCP reassembly software module
125 enable MMIDP sensors 25a-d to detect and prevent secu-
rity attacks faster and more accurately than other currently
available intrusion detection systems. Intruding packets are
detected and prevented from spreading to the private or out-
side networks by protocol anomaly detection software mod-
ule 130, stateful signature detection software module 135,
and traffic signature detection software module 140.

Referring now to FIG. 9, a flow chart showing exemplary
steps taken by the protocol anomaly detection software mod-
ule when packets arrive at the network intrusion detection and
prevention sensor running at gateway mode is described.
Protocol anomaly detection software module 130 examines
the packet flows arranged by flow manager software module
125 in flow table 155 to determine irregularities in the net-

US 9,094,372 B2

17

work protocol specifications in non-TCP packets and TCP
data streams. At step 215, protocol anomaly detection soft-
ware module 130 accesses the packet flow descriptor and
session corresponding to the packets arriving at MMIDP sen-
sors 25a-d from the pointer to the packet flow descriptor and
session passed by flow manager software module 120.

At step 220, protocol anomaly detection software module
130 examines the packet flow and session to determine which
protocols need to be checked for irregularities. At step 225,
protocol anomaly detection software module 130 performs
high speed protocol verification by querying a protocol data-
base that contains a list of protocols supported by MMIDP
system 23 and the allowable actions for each protocol. Pro-
tocol anomaly detection software module 130 queries the
protocol database to determine whether the incoming packets
are compliant with the protocol used to transmit them and
whether the actions or commands embodied in the non-TCP
packets or TCP data streams are authorized or allowed for the
protocol. Steps 220 and 225 enable protocol anomaly detec-
tion 130 to check for protocol irregularities much more
quickly and accurately than other typical anomaly detection
systems. If the protocol specifications in the protocol data-
base do not match the protocol specifications in the packets
(step 230), the packets are dropped at step 235.

Referring now to FIG. 10, an exemplary table of protocols
supported by the private network is described. Protocol table
245 lists the protocols that are supported by MMIDP system
23 and some of their corresponding RFC standard specifica-
tion, if any. It should be understood by one skilled in the art
that additional protocols not listed in protocol table 245 such
as ICMP may also be supported by the private network.

Referring back to FIG. 6, stateful signature detection soft-
ware module 135 matches known attack signatures to the
packet headers and data according to the network protocol
used to transmit the packet. Software module 135 downloads
known attack signatures from MMIDP database 35 run by
MMIDP server 30 each time a signature update is made.
Signature updates are made whenever new signature attack
patterns are learned by network security administrators or by
the vendors of MMIDP system 23. Preferably, new signatures
will be updated within a week of being characterized in the
Internet or other public domain forums.

The signatures are compared only to the relevant portion of
the data stream or data packets. This is done utilizing two
mechanisms. The first makes sure that signatures are only
compared against traffic from relevant packet flows. For
example, SMTP signatures will not be compared against FTP
data. The second mechanism analyzes the traffic to under-
stand the state of the packet and data stream communications.
This analysis allows MMIDP to distinguish, for example,
between SMTP commands and SMTP data lines or FTP user
names and FTP file names. That is, stateful signature detec-
tion software module 135 compares signatures that are rel-
evant to the data protocol to the relevant portion of the data.
For example, not only will a signature that looks for a certain
SMTP command be compared only to SMTP traffic, but the
comparison is restricted to what is analyzed to be an SMTP
command in the SMTP traffic. That is, by examining the
attributes of the packet flow’s session entry, such as sessions
161-163 in flow table 155, signature detection software mod-
ule 135 is able to determine which signatures need to be
matched against the packet flow. This considerably improves
the performance of signature detection software module 135
since only the signatures that are meaningful to the packet
flow need to be analyzed.

Referring now to FIG. 11, a flow chart showing exemplary
steps taken by the stateful signature detection software mod-

10

15

20

25

30

35

40

45

50

55

60

65

18

ule when packets arrive at the network intrusion detection and
prevention sensor running at gateway mode is described. At
step 210, stateful signature detection software module 135
accesses the packet flow descriptor and session correspond-
ing to the packets arriving at MMIDP sensors 25a-d from the
pointer to the packet flow descriptor and session passed by
flow manager software module 120.

At step 260, software module 135 queries MMIDP data-
base 35 to find the signatures that are relevant to the incoming
data stream or packets. The relevant signatures are those that
would only be considered attacks in the context of the packet
flow and session retrieved from the flow table. The relevant
signatures are converted into regular expressions when stored
in database 35. Regular expressions are patterns that describe
portions of strings. For example, the regular expression
“[0123456789]” matches any single digit in UNIX-based
operating systems. Converting the signatures into regular
expressions enables software module 135 to efficiently match
signatures against packets.

At step 265, software module 135 checks whether the
incoming packets belong to a TCP flow. If not, at step 275, the
signatures are compared to the incoming packets using, for
example, Deterministic Finite Automata (“DFA”). DFA sig-
nature matching builds a state machine for each regular
expression to quickly decide whether the regular expression
is present in the incoming packets. If the incoming packets are
of'a TCP flow, the signatures are compared to the entire TCP
data stream (step 270).

If any matching signatures are found (step 280), the corre-
sponding packets and the flow to which they belong are
dropped by software module 135 at step 290. Otherwise, the
incoming packets free of matching signatures are delivered to
traffic signature detection software module 140. It is under-
stood by those skilled in the art that other pattern matching
algorithms besides DFA matching can be used to match attack
signatures.

Referring back to FIG. 6, traffic signature software module
140 matches traffic signatures to the network traffic to detect,
for example, port scans and network sweeps. The traffic sig-
natures are downloaded to software module 140 from
MMIDP database 35 maintained by MMIDP server 30.

Referring now to FIG. 12, a flow chart showing exemplary
steps taken by the traffic signature detection software module
when packets arrive at the network intrusion detection and
prevention sensor running at gateway mode is described. The
steps taken by traffic signature detection software module 140
are similar to those taken by stateful signature detection soft-
ware module 135 to detect attack signatures. At step 310,
traffic signature detection software module 140 accesses the
packet flow descriptor and session corresponding to the pack-
ets arriving at MMIDP sensors 25a-d from the pointer to the
packet flow descriptor and session passed by flow manager
software module 120.

At step 315, traffic signature detection software module
140 queries MMIDP database 35 to find the traffic signatures
that are relevant to the flow of the incoming packets. The
relevant signatures are found by examining the protocol of the
flow to which the incoming packets belong. For example, if
the incoming packets are part of an ICMP packet flow, soft-
ware module 140 will only consider ICMP-based traffic sig-
natures.

At step 320, the traffic signatures are matched to the incom-
ing data stream or packets. If any matching signatures are
found, software module 140 updates a signature-specific
count as specified by the traffic signature at step 325. The
signature count may, for example, count how many different
hosts were contacted from the same IP address, during a given

US 9,094,372 B2

19

time period, and so on. If the signature count is above a
pre-determined threshold (step 330), then software module
140 generates an alarm to be displayed at MMIDP GUIs
40a-d at step 335.

Referring back to FIG. 6, MMIDP sensors 25a-d are also
equipped with IP router software module 145 and IP for-
warder software module 150 to route incoming and outgoing
packets to the appropriate points in the network (IP router
software module 145) and to use the routing information to
forward the packets to their destination (IP forwarder soft-
ware module 150). IP forwarder software module 150 has full
control over which packets will be allowed through MMIDP
sensors 25a-d and will not let packets that any of the other
software modules has deemed malicious to go through.

Referring now to FIG. 13, a flow chart showing exemplary
steps taken by the network intrusion detection and prevention
sensor when determining the validity of an incoming or out-
going packet is described. At step 350, the packet fragments
arriving at MMIDP sensors 25a-d are reconstructed into
packets by IP defragmentation software module 115. At step
355, flow manager software module 120 in MMIDP sensors
25a-d organizes the incoming packets into packet flows and
sessions in a flow table as described above. At step 360,
MMIDP sensors 25a-d check whether there are any TCP
packets among the incoming packets. If so, the TCP packets
are reordered at step 365. At step 370, protocol anomaly
detection software module 130 checks to see if there are any
protocol irregularities in the packets. Any packet presenting
protocol irregularities will be dropped at step 380.

The packets conforming to the network protocol specifica-
tions of the protocols listed in table 245 (FIG. 10) will then
proceed to stateful signature detection software module 135
at step 375 to be matched against attack signatures down-
loaded to MMIDP sensors 25a-d from MMIDP database 35.
As described above, only the relevant signatures are checked,
thereby considerably speeding up the signature matching pro-
cess as compared to previously-known signature-based sys-
tems. If there are any signatures matching information in a
given non-TCP packet or TCP data stream, the packet or
stream is dropped at step 380.

Packets containing no matching signatures are passed on to
traffic signature detection software module 140 at step 385 for
determining whether there are any traffic signatures that
match the packet flows associated with the packets being
analyzed. If there are any matching traffic signatures and the
internal counters of any of these traffic signatures surpasses a
pre-determined threshold (steps 390, 400), then MMIDP sen-
sors 25a-d generate an alarm at step 405 to be displayed at
MMIDP GUIs 40a-d indicating a network sweep or port scan
at the network.

Lastly, all the packets free of protocol irregularities and
matching attack and traffic signatures are routed and for-
warded to their appropriate network destinations by IP router
software module 145 and IP forwarder software module 150
at step 410. It should be understood by one skilled in the art
that all the steps described above in connection with FIG. 13
are performed upon the arrival of each new packet at MMIDP
sensors 25a-d. It should also be understood by one skilled in
the art that steps 370, 375, and 385 may be performed in a
different order.

Referring now to FIG. 14, a schematic view of exemplary
functions performed by the network intrusion detection and
prevention graphical user interface is described. MMIDP
GUIs 40a-d can be accessed from any client connected to the
network and provide access to all the functionalities of
MMIDP server 30 and MMIDP sensors 25a-d. Configuration
interface 420 allows network security administrators to install

10

15

20

25

30

35

40

45

50

55

60

20

MMIDP sensors 25a-d and perform other configuration func-
tions related to their maintenance. Security policy editor 425
enables network security administrators to specify a network
security policy to define which traffic to inspect and which
attacks MMIDP sensors 25a-d should look for. Logs and
alarms viewer 430 enables network security administrators to
view information coming from MMIDP sensors 25a-d and
MMIDP server 30 to determine what is happening in the
network. Logs describe the packet activity coming through
MMIDP sensors 25a-d and alarms are generated by MMIDP
sensors 25a-d when an attack has been attempted on the
network. The alarms are classified into new, real, false, or
closed, that is, alarms that are no longer active due to the
packets attempting the attack being dropped. Network secu-
rity administrators may view logs according to the order in
which they are generated by MMIDP sensors 25a-d and
according to other specified criteria such as their date, the
source IP address, the destination IP address, and so on. The
logs may be viewed in real time and at different levels of
detail. All the logs may be backed up and stored in MMIDP
database 35.

The information provided by MMIDP sensors 25a-d and
MMIDP server 30 is organized in reports that provide access
to network statistics that otherwise would be difficult to
gather, such as the top IP addresses used in attacks, the top
attacks, the number of alarms and incidents generated, and
whether an alarm is real or false, among other statistics. The
reports are displayed within reports viewer 435. In addition,
network security administrators may specify which signa-
tures from the set of signatures stored in MMIDP database 35
will be used to detect and prevent attacks, as well as create
new signatures.

Lastly, status viewer 440 enables network security admin-
istrators to monitor the status of MMIDP sensors 25a-d,
MMIDP server 30, and other network resources. It is under-
stood by one skilled in the art that MMIDP GUIs 40a-d may
perform additional functions other than the ones described
above in connection with FIG. 14.

Referring now to FIG. 15, a schematic view of exemplary
functions performed by the network intrusion detection and
prevention central management server is described. MMIDP
server 30 collects the logs and alarms from MMIDP sensors
25a-d (445) for storage, display, and notification, and infor-
mation about the status of MMIDP sensors 25a-d (450),
among other functions. In addition, MMIDP server 30 keeps
MMIDP database 35 to store the network security policy
(455), attack signatures, logs and alarms, and other reporting
information. Whenever MMDIP sensors 25a-d match attack
and traffic signatures against incoming and outgoing packets,
MMIDP server 30 distributes the network security policy or
policy updates stored in MMDIP database 35 to the sensors
(460). MMIDP server 30 is also responsible for updating
MMIDP database 35 whenever new signatures are specified
by network security administrators using MMIDP GUIs
40a-d (465). It is understood by one skilled in the art that
MMIDP server 30 may perform additional functions other
than the ones described above in connection with FIG. 15.

Referring now to FIG. 16, a flow chart illustrating exem-
plary steps taken by a network intrusion detection and pre-
vention sensor, server, and graphical user interface when an
FTP bounce attack is imminent on the network is described.
At step 475, a user connects to an FTP server in the network
to download or upload files. When this happens, the FTP
user’s software provides the FTP server at step 480 an IP
address and a port number to which the file should be sent or
taken from. This is done via an FTP “port” command. In
practice, the IP address is that of the user, but the port com-

US 9,094,372 B2

21

mand does not limit the IP address to the user’s address.
Because of this, an attacker can tell the FTP server to open a
connection to an IP address that is different from the user’s
address and transfer files from the FTP server to it. To detect
this attack, the MMIDP sensor needs to compare the requests
to the port command with the IP address of the user and send
an alarm to the user or close the FTP connection if the IP
addresses do not match.

At step 485, the user sends an IP address to the FTP server
that is different from the user’s IP address. Prior to the packets
containing the user’s IP address reach the FTP server, the
MMIDP sensor reconstructs any packet fragments at step 490
and organizes the packets into an incoming FTP packet flow
at step 495. At step 500, the MMID sensor reassembles the
TCP packet fragments into client-to-server and server-to-
client data streams. At step 505, protocol anomaly detection
software module 130 in the MMIDP sensor checks whether
the packet is part of an FTP port command. If it is, the
MMIDP sensor compares the IP address of the user to the one
specified by the port command. At step 510, MMIDP checks
if there was no PORT command, or if the IP address match. If
either is true, the MMIDP sensor skips to step 520. If there
was a PORT command and the IP address did not match, the
MMIDP sensor drops the corresponding FTP packets, sends
an alarm to MMIDP server 30, and closes the FTP connection
at step 515. Lastly, at step 520, MMIDP server 30 collects log
and packet information from the MMIDP sensor and sends it
to MMIDP GUIs 40a-d for display.

Referring now to FIG. 17, a flow chart illustrating exem-
plary steps taken by a network intrusion detection and pre-
vention sensor, server, and graphical user interface when an
SMTP “wiz” attack is imminent on the network is described.
The “wiz” attack occurs when an attacker uses the “wiz”
command in an SMTP session with certain vulnerable SMTP
servers to unlawfully gain root access on a network host.
When successful, the attacker can take complete control over
the network host, use it as a platform for launching further
attacks, steal e-mail and other data, and ultimately gain access
to the network resources. Since the “wiz” string can often
appear in an e-mail body, recipient list, and so on, there is a
high probability of generating false alarms if the signature
matching is not done within the context of a client to server
SMTP flow in “command mode.”

At step 535, a user connects to an SMTP server in the
network to establish an SMTP session. At step 540, the SMTP
server establishes a TCP connection with the user through a
3-way handshake by exchanging SYN and ACK packets.
When the TCP connection is established, the user sends the
“wiz” command to the SMTP mail server at step 545 while
the sendmail session is in command mode. At step 550, the
MMIDP sensor reconstructs any packet fragments sent by the
user. The reconstructed packets are organized into a SMTP
packet flow at step 555. At step 560, the MMIDP sensor
reassembles the TCP packet fragments into client-to-server
and server-to-client data streams.

If there is an SMTP command present in the client-to-
server data stream (step 565), the MMIDP sensor searches for
the “wiz” signature in the SMTP command(s) at step 570.
Once a signature match is found, the MMIDP sensor drops
the SMTP packets, sends an alarm to MMIDP server 30, and
closes the SMTP connection at step 575. Lastly, at step 580,
MMIDP server 30 collects log and packet information from
the MMIDP sensor and sends it to MMIDP GUIs 40a-d for
display.

Although particular embodiments of the present invention
have been described above in detail, it will be understood that
this description is merely for purposes of illustration. Specific

10

15

20

25

30

35

40

45

50

60

65

22

features of'the invention are shown in some drawings and not
in others, for purposes of convenience only, and any feature
may be combined with other features in accordance with the
invention. Steps of the described processes may be reordered
or combined, and other steps may be included. Further varia-
tions will be apparent to one skilled in the art in light of this
disclosure and such variations are intended to fall within the
scope of the appended claims.
What is claimed is:
1. A method comprising:
receiving, at a network device, a packet;
determining, by the network device and using a key,
whether information identifying a packet flow, associ-
ated with the packet, is stored in a data structure,
the key being generated based on information included
in the packet;
retrieving, by the network device and based on the infor-
mation identifying the packet flow, particular informa-
tion that is used to perform at least two of a first inspec-
tion of the packet regarding one or more protocol
irregularities, a second inspection of the packet regard-
ing one or more attack signatures, or a third inspection of
the packet regarding one or more traffic signatures
matching the packet flow when the information identi-
fying the packet flow is stored in the data structure;
determining, by the network device, whether to drop the
packet or forward the packet,
determining whether to drop the packet or forward the
packet including performing the at least two of:
the first inspection without a user request to perform
the first inspection,
the second inspection without a user request to per-
form the second inspection, or
the third inspection without a user request to perform
the third inspection,
the at least two of the first inspection, the second
inspection, or the third inspection being per-
formed using the particular information when
the particular information is retrieved,
one of the first inspection, the second inspection, or
the third inspection being performed based on
another one of the first inspection, the second
inspection, or the third inspection being per-
formed; and
processing, by the network device, the packet based on
determining whether to drop the packet or forward the
packet,
processing the packet including dropping the packet
based on determining that the packet is to be dropped,
and
processing the packet including forwarding the packet
based on determining that the packet is to be for-
warded.
2. The method of claim 1, where the information included
in the packet includes:
information identifying a source associated with the
packet,
information identifying a destination associated with the
packet,
information identifying a source port associated with the
packet,
information identifying a destination port associated with
the packet, and
information identifying a protocol associated with the
packet.
3. The method of claim 1, where retrieving the particular
information includes:

US 9,094,372 B2

23

obtaining a pointer to the information identifying the
packet flow; and
retrieving the particular using the pointer.
4. The method of claim 1, where determining whether to
drop the packet or forward the packet includes:
performing the first inspection without a user request to
perform the first inspection, and
where performing the first inspection includes:
examining information regarding the packet flow and
information regarding a session, associated with the
packet, to determine protocols to be checked for irregu-
larities.
5. The method of claim 1, where determining whether to
drop the packet or forward the packet includes:
performing the second inspection without a user request to
perform the second inspection, and
where performing the second inspection includes:
searching a data structure to identify attack signatures that
are relevant to the packet, and
determining whether information in the packet matches the
attack signatures.
6. The method of claim 1, where determining whether to
drop the packet or forward the packet includes:
performing the third inspection without a user request to
perform the third inspection, and
where performing the third inspection includes:
searching a data structure to identify the one or more traffic
signatures,
updating a count associated with the one or more traffic
signatures, and
determining whether the count exceeds a threshold.
7. The method of claim 1, where determining whether to
drop the packet or forward the packet includes:
performing the first inspection without a user request to
perform the first inspection,
performing the second inspection without a user request to
perform the second inspection; and
performing the third inspection without a user request to
perform the third inspection.
8. A system comprising:
a network device to:
receive a packet;
determine, using information included in the packet,
whether information identifying a packet flow, asso-
ciated with the packet, is stored in a data structure;
retrieve, based on the information identifying the packet
flow and when the information identifying the packet
flow is stored in the data structure, particular informa-
tion that is used to perform at least two of a first
inspection of the packet regarding one or more proto-
col irregularities, a second inspection of the packet
regarding one or more attack signatures, or a third
inspection of the packet regarding one or more traffic
signatures matching the packet flow;
determine whether to drop the packet or forward the
packet;
when determining whether to drop the packet or for-
ward the packet, the network device is to perform
the at least two of:
the first inspection without a user request to per-
form the first inspection,
the second inspection without a user request to
perform the second inspection, or
the third inspection without a user request to per-
form the third inspection,
the at least two of the first inspection, the second
inspection, or the third inspection being per-

10

15

20

25

30

40

45

50

55

60

24

formed using the particular information when
the particular information is retrieved,
one of the first inspection, the second inspection, or
the third inspection being performed based on
another one of the first inspection, the second
inspection, or the third inspection being per-
formed; and
process the packet based on determining whether to drop
the packet or forward the packet,
when processing the packet, the network device is to:
drop the packet based on determining that the packet
is to be dropped, and
forward the packet based on determining that the
packet is to be forwarded.

9. The system of claim 8, where, when determining
whether to drop the packet or forward the packet, the network
device is further to:

obtain the information identifying the packet flow; and

perform the third inspection without a user request to per-

form the third inspection based on obtaining the infor-
mation identifying the packet flow,
where, when performing the third inspection, the net-
work device is to:
search a second data structure to identify the traffic
signature matching the packet flow,
update a count associated with the traffic signature,
and
determine whether the count exceeds a threshold.

10. The system of claim 9, where, when performing the
third inspection, the network device is further to:

generate an alarm when the count exceeds the threshold;

and

provide the alarm for display.

11. The system of claim 8, where, when determining
whether to drop the packet or forward the packet, the network
device is further to:

obtain the information identifying the packet flow and

information identifying a session associated with the
packet flow; and

perform the first inspection without a user request to per-

form the first inspection based on obtaining the informa-
tion identifying the packet flow and the information
identifying the session,
where, when performing the first inspection, the net-
work device is to:
identify protocols, associated with the packet flow
and the session, that are to be checked for irregu-
larities.

12. The system of claim 11, where, when performing the
first inspection, the network device is further to:

search a second data structure to identify protocol specifi-

cations associated with the protocols that are to be
checked for irregularities, and

identify the one or more protocol irregularities when one or

more of the protocol specifications do not match one or
more specifications of the protocols in the packet.

13. The system of claim 8, where, when determining
whether to drop the packet or forward the packet, the network
device is further to:

obtain the information identifying the packet flow and

information identifying a session associated with the
packet flow; and

perform the second inspection without a user request to

perform the second inspection based on obtaining the
information identifying the packet flow and the informa-
tion identifying the session.

US 9,094,372 B2

25

14. The system of claim 13, where, when performing the
second inspection, the network device is further to:

search a second data structure to identify the one or more

attack signatures,
the one or more attack signatures being associated with
the packet flow and the session, and

determine whether the one or more attack signatures match

the packet.

15. The system of claim 8, where, when determining
whether to drop the packet or forward the packet, the network
device is further to:

perform the first inspection without a user request to per-

form the first inspection, and

one of:

perform the second inspection without a user request to
perform the second inspection based on performing
the first inspection, or

perform the third inspection without a user request to
perform the third inspection based on performing the
first inspection.

16. A non-transitory computer-readable medium storing
instructions, the instructions comprising:

one or more instructions which, when executed by a

device, cause the device to determine, using information
included in a packet, whether information identifying a
packet flow, associated with the packet, is stored in a data
structure;

one or more instructions which, when executed by the

device, cause the device to retrieve, based on the infor-
mation identifying the packet flow and when the infor-
mation identifying the packet flow is stored in the data
structure, particular information that is used to perform
at least two of a first inspection of the packet regarding
one or more protocol irregularities, a second inspection
of'the packet regarding one or more attack signatures, or
a third inspection of the packet regarding one or more
traffic signatures matching a packet flow;

one or more instructions which, when executed by the

device, cause the device to determine whether to drop
the packet or forward the packet;
the one or more instructions to determine whether to
drop the packet or forward the packet including one or
more instructions to perform at least two of:
the first inspection without a user request to perform
the first inspection,
the second inspection without a user request to per-
form the second inspection, or
the third inspection without a user request to perform
the third inspection,
the at least two of the first inspection, the second
inspection, or the third inspection being performed
using the particular information when the particu-
lar information is retrieved,
one of the first inspection, the second inspection, or
the third inspection being performed based on
another one of the first inspection, the second
inspection, or the third inspection being performed;
and
one or more instructions which, when executed by the
device, cause the device to process the packet based on
determining whether to drop the packet or forward the
packet,

15

25

30

40

45

50

55

60

26

the one or more instructions to process the packet includ-
ing:
one or more instructions to drop the packet based on
determining that the packet is to be dropped, and
one or more instructions to forward the packet based
on determining that the packet is to be forwarded.

17. The non-transitory computer-readable medium of
claim 16, where the information included in the packet
includes:

information identifying a source associated with the

packet,

information identifying a destination associated with the

packet,

information identifying a source port associated with the

packet,

information identifying a destination port associated with

the packet, and

information identifying a protocol associated with the

packet.

18. The non-transitory computer-readable medium of
claim 16, where the one or more instructions to determine
whether to drop the packet or forward the packet include:

one or more instructions to perform the first inspection

without a user request to perform the first inspection;
and

one or more instructions to perform the second inspection

without a user request to perform the second inspection,
where:
the first inspection is performed based on the second
inspection being performed, or
the second inspection is performed based on the first
inspection being performed.

19. The non-transitory computer-readable medium of
claim 16, where the one or more instructions to determine
whether to drop the packet or forward the packet include:

one or more instructions to obtain the information identi-

fying the packet flow; and

one or more instructions to perform the third inspection

without a user request to perform the third inspection
based on obtaining the information identifying the
packet flow,
where the one or more instructions to perform the third
inspection include:
one or more instructions to search a second data struc-
ture to identify the traffic signature matching the
packet flow,
one or more instructions to update a count associated
with the traffic signature, and
one or more instructions to determine whether the
count exceeds a threshold.

20. The non-transitory computer-readable medium of
claim 16, where the one or more instructions to determine
whether to drop the packet or forward the packet include:

one or more instructions to perform the first inspection

without auser request to perform the first inspection, and

one of:

one or more instructions to perform the second inspec-
tion without a user request to perform the second
inspection based on performing the first inspection, or

one or more instructions to perform the third inspection
without a user request to perform the third inspection
based on performing the first inspection.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,094,372 B2 Page 1 of 1
APPLICATION NO. : 14/143794

DATED : July 28,2015

INVENTOR(S) : Nir Zuk et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

IN THE CLAIMS
Please correct Claim 3 as follows:

Column 23, line 3, after “particular” insert -- information --.

Signed and Sealed this
Eighth Day of December, 2015

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

